

何宾 2015.02

本章主要内容

- 常用码制
- 正数表示方法
- 正数码制转换
- 负数表示方法
- 负数补码的计算
- 定点数表示
- 浮点数表示

常用码制 --二进制码制

- 二进制是以2为基数的进位制,即:逢2进1。
- 在C/C++语言中,二进制数以0b开头
 - □ 比如: 0b1011, 0b010111
- 在汇编语言中,二进制数以B/b结尾
 - □ 比如:1011B/1011b、010111B/01011b

常用码制--十进制码制

- 十进制是以10为基数的进位制,即:逢10进1。
- 在计算机系统中,对十进制数的表示没有特殊的要求。

常用码制--八进制码制

八进制是以8为基数的进位制,即:逢8进1。

- 在C/C++语言中,八进制数以0开头
 - □ 比如: 0123, 0675
- 在汇编语言中,八进制数以O/o结尾
 - □ 比如: 1230/1230、6750/6750

常用码制 --十六进制码制

十六进制是以16为基数的进位制,即:逢16进1。

- 在16进制计数规则中,只使用数字0、1、2、3、4、5、6、7、8、9和字母A/a、B/b、C/c、D/d、E/e、F/f表示。
- 在C/C++语言中,十六进制数以0x开头
 - □ 比如: 0x1234, 0xE1DD
- 在汇编语言中,十六进制数以H结尾
 - □ 比如:1234H、E1DDH

常用码制 --不同进制数之间的对应关系

十进制数	二进制数	八进制数	十六进制数
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110 如需原始PPT	6 文件请点击此处	6

http://www.gpnewtech.com/ppt

常用码制 --不同进制数之间的对应关系

7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D

常用码制 --不同进制数之间的对应关系

14	1110	16	Е
15	1111	17	F
16	1,0000	20	10
17	1,0001	21	11
18	1,0010	22	12
19	1,0011	23	13
20	1,0100	24	14

常用码制 --BCD码

- BCD码(Binary-Coded Decimal)亦称二进码十进数或
- 二-十进制代码。用4位二进制数来表示1位十进制数中的
- 0~9这10个数码。
- BCD码可分为有权码和无权码两类:
 - □有权BCD码有8421码、2421码、5421码,其中8421码是最常用的;
 - □无权BCD码有余3码、格雷码(注:格雷码并不是BCD码)等。

$$7 \times 10^3 + 5 \times 10^2 + 3 \times 10^1 + 1 \times 10^0$$

■ 对于一个五位二进制数10101,用2的幂次方表示为:

$$1\times2^4 + 0\times2^3 + 1\times2^2 + 0\times2^1 + 1\times2^0$$

■ 对于一个三位八进制数327,用8的幂次方表示为:

$$3 \times 8^2 + 2 \times 8^1 + 7 \times 8^0$$

■ 对于一个四位十六进制数13AF,用16的幂次方表示为:

$$1 \times 16^3 + 3 \times 16^2 + A \times 16^1 + F \times 16^0$$

推广总结:

■ 对于一个N位的2进制数,最低位为第0位,最高位为第N-1位。

其计算公式为:

$$Y = S_{N-1} \cdot 2^{N-1} + S_{N-2} \cdot 2^{N-2} + \ldots + S_1 \cdot 2^1 + S_0 \cdot 2^0$$

- 口 Si为第i位二进制数的值,取值为0或者1。
- 口 2ⁱ为第i位二进制数的权值。
- 口 Y为等效的十进制数。

$$Y = S_{N-1} \cdot 8^{N-1} + S_{N-2} \cdot 8^{N-2} + \ldots + S_1 \cdot 8^1 + S_0 \cdot 8^0$$

- 口 Si为第i位八进制数的值,取值范围为0~7。
- 口 8′为第i位八进制数的权值。
- 口 Y为等效的十进制数。

■ 对于一个N位的16进制数,最低位为第0位,最高位为第N-1位。

$$Y = S_{N-1} \cdot 16^{N-1} + S_{N-2} \cdot 16^{N-2} + \ldots + S_1 \cdot 16^1 + S_0 \cdot 16^0$$

- 口 Si为第i位十六进制数的值,取值范围为0~9,A~F。
- 口 16ⁱ为第i位十六进制数的权值。
- 口 Y为等效的十进制数。

■ 对于一个三位十进制小数0.714,用10的幂表示为:

$$7 \times 10^{-1} + 1 \times 10^{-2} + 4 \times 10^{-3}$$

■ 对于一个五位二进制小数0.10101,用2的幂表示为:

$$1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5}$$

推广总结:

■ 对于一个N位的2进制小数,最高位为第0位,最低位为第N-1位。其计算公式为:

$$Y = S_0 \cdot 2^{-1} + S_1 \cdot 2^{-2} + \ldots + S_{N-2} \cdot 2^{-(N-1)} + S_{N-1} \cdot 2^{-N}$$

- 口 Si为第i位二进制小数的值,取值范围为0或者1。
- 口 2-(i+1) 为第i位二进制小数的权值。
- 口 Y为等效的十进制小数。

十进制整数转换成其它进制数

--十进制整数转换成二进制数

长除法

■ 采用除法,除数始终为2,将十进制进行分解,直到商为0结束。然后,按顺序将最后得到的余数排在最高位,而最先得到的余数排在最低位。

比较法

- 让需要转换的正整数和不同的二进制权值进行比较。当:
 - □ 需要转换的正整数大于所对应的二进制权值时,得到1;并且转换的正整数减去二进制权值得到余数。然后,再用得到的余数与下一个二进制权值进行比较。
 - □ 需要转换的数小于所对应的二进制权值时,得到0。并且不做任何处理。

十进制整数转换成其它进制数 ---十进制整数转换成二进制数

【例】使用长除法将十进制整数59转成所对应的二进制数

$$29 \div 2 = 14 \dots 1$$

$$14 \div 2 = 7 \dots 0$$

$$7 \div 2 = 3 \dots 1$$

$$3 \div 2 = 1 \dots 1$$

$$1 \div 2 = 0 \dots 1$$

注:...前面的数字表示商,...后面表示的数字为余数。

所以,十进制正整数59所对应二进制数111011。

十进制整数转换成其它进制数 --- 十进制整数转换成二进制数

【例】使用比较法将十进制整数59转换所对应的二进制数

通过比较法,如下表所示,得到十进制正整数59所对应的二进制数为111011。

比较的数	59	59	27	11	3	3	1
二进制权值	$2^6 (64)$	2^{5} (32)	2^4 (16)	2^{3} (8)	2^{2} (4)	2^{1} (2)	2^{0} (1)
对应的二进制值	0	1	1	1	0	1	1
余数	59	27	11	3	3	1	0

十进制整数转换成其它进制数 --+ 进制整数转换成十六进制数

长除法

■ 采用除法,除数始终为16,将十进制进行分解,直到商为0结束。然后,按顺序将最后得到的余数排在最高位,而最先得到的余数排在最低位。

比较法

- 让需要转换的正整数和不同的十六进制权值进行比较,当:
 - □ 需要转换的正整数大于所对应的十六进制权值时,得到商;并且转换的正整数减去十六进制权值与商乘积后得到余数。然后,再用得到的余数与下一个十六进制权值进行比较。
 - □ 需要转换的数小于所对应的十六进制权值时,得到0。并且不做任何处

十进制整数转换成其它进制数 --- 十进制整数转换成十六进制数

【例】使用长除法将十进制整数4877转换成所对应的十六进制数

4877÷16=304....13(D)

304÷16=19....0

19÷16=1....3

 $1 \div 16 = 0....1$

注:...前面的数字表示商,...后面表示的数字为余数。

所以,十进制正整数4877所对应十六进制数为130D。

十进制整数转换成其它进制数 --+ 计进制整数转换成十六进制数

【例】使用比较法将十进制整数4877转换成所对应的十六进制数

通过比较法,如下表所示,得到十进制正整数4877所对应的十六进制数为 130D。

比较的数	4877	781	13	13
十六进制权值	16 ³ (4096)	16^2 (256)	16 ¹ (16)	16 ⁰ (1)
对应的十六进制值	1	3	0	D
余数	781	13	13	0

正数码制转换 --十进制小数转换成二进制数

长乘法

将小数乘以2,取其整数部分的结果。然后,再用计算后的小数部分依此重复计算,算到小数部分全为0为止。在读取整数部分的结果时,最先得到的整数放在小数的最高有效位,而最后得到的整数放在小数的最低有效位。

比较法

- 让需要转换的数和不同的二进制权值进行比较,当:
 - 需要转换的小数大于所对应的二进制权值时,得到1;并且转换的小数减去二进制权值得到余数。然后,再用得到的余数与下一个二进制权值进行比较。
 - □ 需要转换的数小于所对原外型研制模值的 得到0。并且不做任何处理。

正数码制转换 --十进制小数转换成二进制数

【例】使用长乘法将一个十进制小数0.8125转换成所对应的二进制小数

0.8125×2=1.625 取整是1

0.625×2=1.25 取整是1

0.25×2=0.5 取整是0

0.5×2=1.0 取整是1

即:十进制小数0.8125所对应的二进制小数表示为0.1101。

正数码制转换 --十进制小数转换成二进制数

【例】使用比较法将一个十进制小数0.8125转换成所对应的二进制小数

通过比较法,得到十进制小数0.8125所对应的二进制小数为0.1101。

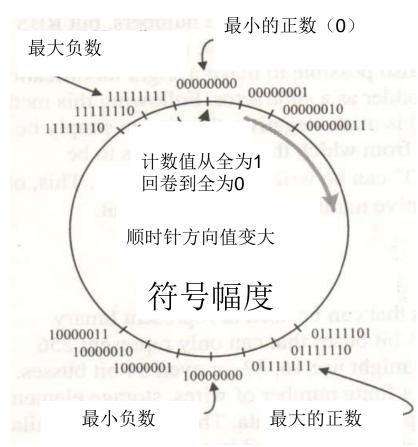
比较的数	0.8125	0.3125	0.0625	0.0625
二进制权值	2 ⁻¹ (0.5)	2 ⁻² (0.25)	2-3 (0.125)	2-4 (0.0625)
对应的二进制值	1	1	0	1
余数	0.3125	0.0625	0.0625	0

负数表示方法

- 一个N位的系统总共可以表示2N个数,因此一个有用的编码就是使用一半可用的编码(2N/2)表示正数,另一半表示负数。
- 可以将一个比特位设计成一个符号位,用于区分正数和负数。 在这种表示方法中,最高有效位(Most Significant Bit, MSB)可以作为符号位。如果:
 - 口 符号位为1,所表示的数为负数。
 - 口 符号位为0,所表示的数为正数。
- 在所有可能的负数编码方案中,经常使用两种:
 - 口 符号幅度
 - 口 二进制补码

负数表示方法 --符号幅度表示法

- 就是用MSB表示符号位,剩下的位表示幅度,如右图所示。在一个8位的符号幅度系统中:
 - □ 十进制数16表示为00010000
 - □ 而十进制数-16表示为10010000



符号幅度表示法

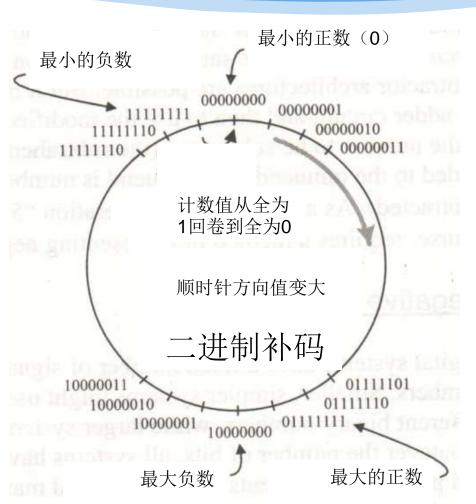
负数表示方法 --符号幅度表示法

用于数字系统中最不利的方面表现在:

- 如果0到2N的计数范围从最小到最大,则最大的正数将出现在 所表示范围的一半的地方,然后,跟随最小的负数。
- 最大的负数出现在范围的末尾,更多的计数将出现回卷。这是由于不能表示2N+1。
- 因此,在计数范围内,2N后面跟着0,这样最大的负数就立即 调整到最小的正数。

补码表示法

■ 由于上面的原因,引入了 二进制补码的概念,如右 图所示。



如需原始PPT文件请点击此处 二进制补码表示法 http://www.gpnewtech.com/ppt

负数表示方法 --补码表示法

- 在二进制补码编码中,MSB仍是符号位,1表示负数,0表示正数。
- 在二进制补码中,0由一个包含所有0的比特模式所定义。其余的 2^N-1个数表示非零的正数和负数。
 - □ 由于2^N -1是奇数 , (2^N -1)/2个编码表示负数 , [(2^N -1)/2]-1个编码表示正数。
 - □ 换句话说,可以表示的负数比正数要多一个。
 - □ 最大负数的幅度要比最大正数的幅度个数要多一个。

负数表示方法 --补码表示法

- 二进制补码编码的不利的地方是,不容易理解负数。
- 对于一个N位字长的二进制补码来说,其可以表示的有符号数(包括正数、负数和0)的范围是:

 $-2^{N-1} \sim 2^{N-1} - 1$

- ■原码转补码
 - □将该负数所对应的正数按位全部取反。
 - □ 将取反后的结果加1。

【例】将+17转换-17的二进制补码

- 对应的17的原码为00010001
- 按位取反后变成11101110
- 结果加1,变成11101111

【例】将-35转换为+35的二进制补码

- 对应的-35的补码为11011101
- 按位取反后变成00100010
- 结果加1,变成00100011

【例】将-127转换为+127的二进制补码

- 对应的-127的补码为1000001
- 按位取反后变成01111110
- 结果加1,变成01111111

■比较法

□ 得到需要转换负数的最小权值,该权值为负数,以-2^{*}表示,使得 其满足:

- 2ⁱ <需要转换的负数;

- □ 取比该权值绝对值2ⁱ小的权值,以2ⁱ⁻¹, 2ⁱ⁻², ..., 2^o的幂次方表示;
- □ 需要转换的负数+2ⁱ ,得到了正数 ,以后的权值2ⁱ⁻¹ , 2ⁱ⁻² , ... , 2⁰ 按照前面的方法和这个正数进行比较。

【例】使用比较法得到负整数-97所对应的二进制补码

对于负的十进制整数-97来说,假设使用8位二进制数进行表示,

则其所对应的二进制补码为10011111B,如下表所示。

转换的数	-97	31	31	31	15	7	3	1
权值	-2 ⁷ (-128)	2 ⁶ (64)	2 ⁵ (32)	2 ⁴ (16)	2 ³ (8)	2 ² (4)	2 ¹ (2)	2 ⁰ (1)
二进制数	1	0	0	1	1	1	1	1
余数	31	31	31	15	7	3	1	0

比较法

- 得到需要转换负数的最小权值,该权值为负数,以-2º表示
- 取比该权值绝对值2ⁱ小的权值,以2⁻¹,2⁻²,…,2^{-N}的幂次方表示。
- 需要转换的负数+1,得到了正数,以后的权值2⁻¹,2⁻²,..., 2^{-N}按照前面的方法和这个正数进行比较。

【例】使用比较法得到负小数-0.03125所对应的二进制补码。 通过比较法,得到十进制负小数-0.03125所对应的二进制小数为 1.11111。

转换的数	-0.03125	0.96875	0.46875	0.21875	0.09375	0.03125
权值	-2 ⁰ (-1)	2 ⁻¹ (0.5)	2 ⁻² (0.25)	2 ⁻³ (0.125)	2 ⁻⁴ (0.0625)	2 ⁻⁵ (0.03125)
二进制数	1	1	1	1	1	1
余数	0.96875	0.46875	0.21875	0.09375	0.03125	0

定点数表示

定点数就是二进制小数点在固定位置的数。二进制小数点左边部分的位被定义为整数位,而该点右边部分的位被定义为整数位,而该点右边部分的位被定义成小数位。通常表示为Qm.n格式,即:

- m为整数部分的二进制的位数。
 - □ m越大,表示数的动态范围越大;
 - □ m越小,表示数的范围越小;
- n为小数部分的二进制的位数。
 - □ n越大 , 表示数的精度越高 ;
 - □ n越小 , 表示数的精度就越低 ;

定点数表示

【例】将十进制数-28.65625用定点二进制的形式表示。

使用前面所介绍的比较法,将-28.65625表示成Q7.5定点二进制数1100010.01011B。

转换的数	-28. 65625	35. 34375	3. 34375	3. 34375	3. 34375	3. 34375
权值	-2^{6}	2^{5}	2^4	2^3	2^2	21
二进制数	1	1	0	0	0	1
余数	35. 34375	3. 34375	3. 34375	3. 34375	3. 34375	1. 34375
转换的数	1. 34375	0. 34375	0. 34375	0.09375	0.09375	0. 03125
权值	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}
二进制数	0	0	1	0	1	1
余数	0. 34375	0. 34375	0. 09375	0.09375	0. 03125	0

如需原始PPT文件请点击此处

浮点数表示

大多数的浮点数都遵循单精度或双精度的IEEE浮点标准。

■ 标准浮点数字长由一个符号位S,指数e和无符号(小数)的规格 化尾数m构成,如下所示。

S	指数e	无符号尾数m
---	-----	--------

■ 浮点数可以用下式描述:

$$X = (-1)^{S} 1.m \cdot 2^{e-bias}$$

浮点数表示

对于IEEE-754标准来说,还有下面的约定:

- □ 当指数e=0,尾数m=0时,表示0;
- □ 当指数e=255,尾数m=0时,表示无穷大;
- □ 当指数e=255,尾数m≠0时,表示NaN(Not a Number,不是一个数)。

浮点数表示

IEEE的单精度和双精度格式的参数

	单精度	双精度
字长	32	64
尾数	23	52
指数	8	11
偏置	127	1023