Cryptography

Part 1, Basics

11 XU ‘
Introduction

* Cryptography is the art of designing mathematical
methods for protecting information

* A means of transmitting confidential information
securely over open networks: encryption

* Classical cryptographical algorithms have been
known for hundreds of years

* |Innovations in the last two decades have created
a whole new branch of cryptography: asymmetric
(public key) cryptography
— Digital signatures
— Secure on-line key exchange

"IIXU‘

Symmetric Cryptography

* Based on using a shared secret, a secret piece of

iInformation
— Used to transform information to an encrypted form

— Only those who know the secret are able to recover the
content of encrypted data

* Two facts determine the procedure:
— Transformation method: the encryption (enciphering)
algorithm

— Shared piece of information: the secret key

plaintext

A 4

secret key

|

Encryption

ciphertext

secret key

|

»| Decryption

original
plaintext

[

"IIXU‘

Example: Caesar Cipher

Alice and Bob agree that they use Caesar Cipher

to encrypt their communication, with the number 4
as their secret key

— Alice encrypts the message M = YES
ABCDEFCHI J KLMNOPQRSTUWWKYZ
ABCDEFGHI J KLMNOPQRSTUVWKYZ
— Alice sends Bob the encrypted message C = E(M) = UAO
— Now that Bob knows the secret key 4, he can calculate the
Inverse transformation E*
ABCDEFCHI J KLIMNOPQRSTUWWKYZ
ABCDEFGHI J KLMNOPQRSTUVWKYZ
— Bob decrypts C (applies the inverse transformation) to
recover the original message:
EY(C)=M=YES

"IIXU‘

Example: Analysis of Caesar
Cipher

Is it possible for an attacker to find out the content of the
encrypted message”?

Kerkhoff's Principle: we assume that the attacker knows the

encryption algorithm used

— The set of good encryption algorithms is small, the potential
attacker can try all of them relatively easily

Assume that an attacker, Eve, gets to know C=UAP

— Since Eve knows that the algorithm is Caesar Cipher, she may
start ciphering C with different keys

— Using the English alphabet, there are only 26 possible keys

— In at most 26 trials, Eve breaks the cipher

The method of trying all possible keys is called brute force

"IIXU‘

One-Time Pad

* Instead of using Caesar Cipher, with the constant

shift of 4 for every letter, Alice and Bob may

alternatively agree:

— Left-shift the first letter by 11 positions, the second letter
by 1 position and the third letter by 3 positions

— This algorithm would produce, when applied to the word M
=YES, C =E(M) =O0DP

— Here the secret key constitutes of the triplet (11,1,3)

Now the number of all possible keys is

26*26*26=17576

— This is still very small a key space to be exhaustively
searched with today’s computing resources

— However, trying every possible key would yield all English
three letter words!

"IIXU‘

One-Time Pad (cont.)

This algorithm, called One-Time Pad, is perfectly secure
against brute force attacks (and all other imaginable
cryptographic attack methods)

In computer-based cryptography, the set of letters is 0 and 1

For example, the bit-string K = 001101 could be used as a
secret key for One-Time Pad to encrypt a 6-bit string M =
011001, C = E(M) = M xor K:

M 011001

K 001101
C 010100

One-Time Pad has two major limitations

— The same key may be used only once (otherwise there is a
statistical attack for breaking the cipher)

— The length of the key is equal to the length of the message

"IIXU‘

Cryptanalysis

e Cryptanalysis is the art of finding techniques for
breaking cryptographical algorithms

* Usually based on statistical methods
— Counting frequencies of different patterns in ciphertext
may reveal some redundancies in the original plaintext

* Cryptographical attacks may be categorized as
follows:

— Ciphertext only attack means determining the secret key
from the knowledge of a set of encrypted messages

— Known plaintext attack means determining the secret key
using the knowledge of a set of plaintext/ciphertext -pairs

— In a chosen plaintext attack the attacker has gained
knowledge of plaintext/ciphertext -pairs for chosen
plaintexts

"IIXU‘

Building Blocks for Good
Algorithms

* Design of symmetrical cryptographical algorithms
aims at obscuring the redundancies in the
plaintext

e Two basic methods for implementing this are

confusion and diffusion

— Confusion is produced using substitution; when a long
block of plaintext is substituted for a different block of
ciphertext, the statistical patterns of plaintext become hard
to detect

— Diffusion dissipates the redundancy of the plaintext by
spreading it out over the ciphertext; this can be produced
using permutation, i.e. reordering the parts of a plaintext
message

11 XU

IDEA

* Designed by X. Lai and J. Massey in 1992
* 64-Dbit blocks in, 64-bit blocks out

* Same 128-bit key used for encryption and
decryption

* Involves mixed use of three algebraic operations

on 16-bit integers:

— Addition mod 2 (bitwise XOR)
— Addition mod 21¢

— Multiplication mod 2%+1

* Fast implementations in software and hardware
* A default cipher in PGP and SSH

10

"IIXU‘

IDEA Subkey Calculation

For encryption, 52 16-bit subkeys are generated from the
iInput 128-bit key, to be used in the 8 rounds of IDEA
operation
— The 128-bit input key K is first divided to 8 16-bit blocks:
K=K |K,|K5|K,|Kg|Kq| K, |Kg
— These are stored into memory: Z,=K,, Z,=K,, ..., Zg=Kq
— Then the bits of K are rotated 25 positions to the left and split
again into 8 16-bit blocks
— The resulting blocks are stored into memory as Z,, ..., Z;,
— The above step is repeated until all Z,, ..., Z., are calculated

For decryption, the corresponding 52 16-bit subkeys are
generated similarly, in a slightly modified way

11

"IIXU‘

IDEA Operation

first round

seven more
rounds

output
transformation

Xy X+2)is Xy
‘.Zl*(g z,—H e Z; ™0 2,
;’] ®
Zs
Y -z, ¥
T = |
* -0

| y . Y
. |
ZI,Z49 Zsy Zs5, ? Zs)

Y, Y, Y, Y,

X =X, |X,|X;X, input

Y =Y,|Y,|Y;]Y, output

addition mod 2 of 16-bit
Hﬂ integers

bitwise XOR of 16-bit
@ sub-blocks

multiplication mod 2'6+1
() of 16-bit integers

12

"IIXU‘

Security of IDEA

* To date, the brute force attack is the best known way for
attacking IDEA

* The key length of 128-bits makes the number of all possible
keys incredibly large: 228 = 1038
— With one billion hardware devices each capable of performing
billion encryptions per second the brute force attack would take
1013 years, longer than the age of universe
— An array with 1024 such chips could perform the brute force

attack in a day, but there are not enough silicon atoms in the
universe for that

* However, IDEA is still a relatively new algorithm; in

cryptography, there is no such thing as absolute truth:
— As new mathematics is invented, old algorithms may be broken,
and become replaced by new ones

13

"IIXU‘

Other Symmetric Encryption
Algorithms

* DES (Digital Encryption Standard) is perhaps the most
widely used encryption algorithm
— The relatively small key length of 56 bits makes DES vulnerable
to a brute force attack with today’s computing resources

e 3DES (Triple DES) performs DES encryption three times,
yielding effective key length of 112 bits

 RC2 and RC4 can be used with variable key lengths
— With the default 40-bit keys, these ciphers are relatively easy to
break

* New encryption algorithms are being published all the time
— Most of them are trivial to break
— It is recommended to use older, widely known algorithms

14

"IIXU‘

Cipher Feedback

Normally, encryption is done one 64-bit block at a time

— Every 8-octet string of plaintext encrypts to 8 octets of ciphertext

— This way of applying a symmetric block encryption algorithm is
called Electronic Codebook (ECB) Mode

The ECB mode has a potential security risk: encrypting
similar blocks of 8 octets always produces similar ciphertext

blocks

— If the input plaintext contains e.g., formatted text, collecting large
amounts of ciphertext may help an attacker to gain information
on the content of the plaintext

Cipher Block Chaining (CBC) is a mode that can be used to
add feedback to produced ciphertext

— An Initialization Vector (1V) is a random block of data used in the
beginning to prevent identical plaintexts producing same output

15

'\IXU‘

Cipher Block Chaining Mode

Encryption in CBC Mode Decryption in CBC Mode
Py Py P, Cy G
IV"% 4% - 4’% % %
Ex Ex Ex Dk Dk

16

"IIXU‘

One-Way Hash Functions

* A hash function is a mapping that compresses an

Input bit-string to a smaller bit-string of fixed length

Cryptographic hash functions satisfy two

requirements: they are one-way and collision-free

— A hash function H is called one-way, if for a given hash
value C it is practically impossible to find out an input M
such that H(M) = C

— A collision-free hash function H is such that it is
computationally infeasible to find out two values M, and
M, such that H(M,)=H(M,)

Most widely used cryptographic hash functions are
SHA-1 (160-bit output) and MD5 (128-bit output)

17

"IIXU‘

Message Authentication Codes

Cryptographic hash functions are used to produce

Message Authentication Codes (MAC)

— To verify integrity of a message, i.e. that it has not been
altered in transit
— To authenticate the identity of a message’s originator

Example:

— Let’s assume that Alice and Bob share a secret key K

— Alice creates a message M of 1000 bits

— Alice uses SHA-1 to compute a 160-bit hash V=H(M|K) of
the message concatenated with the secret key

— Alice transmits Bob the strings M and V

— When Bob receives the message, he also computes
H(M|K) from the received message M and verifies that this
equals V

18

o ‘ Two Problems with Symmetric
Cryptosystems

* Key agreement
— We need an efficient way to agree upon a common secret
key
— distant locations
— peers not previously known to us

* |dentification (authentication of identity)

— How can we be sure about the peer’s identity?
— in the Internet we are "blind"

19

"IIXU‘

Asymmetric Cryptography

e The requirement of a shared secret with symmetric
encryption algorithms is a serious limitation in large open
networks:

— If every user wishes to communicate with each other privately in
a network of n users, a total of n(n-1)/2 keys are needed

— Every key needs to be distributed using a reliable channel (a
courier, etc.) before communication can start

* Asymmetric (public key) cryptography addresses these
ISsues

* Asymmetric encryption algorithm involves using separate
keys for encryption and decryption

— The knowledge of either key does not reveal any information
about the other key

20

"IIXU‘

Asymmetric Cryptography (cont.)

* |n practice, one of the keys is kept secret and the
other is published to other parties of the system

— The secretly stored key is called private key
— The other key is called public key

* Asymmetric algorithms are mainly used for:

— Encryption
— Digital signatures
— Key agreement

* Other applications include user authentication
schemes and anonymous digital cash

21

"IIXU‘

Public Key Encryption

* Let E be an asymmetric encryption algorithm

* When Alice wants to send Bob a confidential
message M, she may act as follows:

— Alice fetches Bob’s public key Kg , from a publicly
available directory

— She then encrypts M using Kg,,: C = E(M,Kg,,) and send
this to Bob

— Now Bob is the only person being able to decrypt the
message

29

"IIXU‘

Digital Signatures

* The order of keys with asymmetric encryption can
be reversed, resulting in a digital signature
— Alice calculates a hash H(M) of M
— She then encrypts the hash with her private key: S =

E(H(M), K1,,..) and sends Bob the pair M, S; where S is
Alice’s signature

— Now Bob may verify Alice’s signature using Alice’s public
key, by checking that E(S,K,;..) = H(M)

23

"IIXU‘

RSA

* An asymmetric encryption algorithm invented by
Rivest, Shamir and Adleman in 1978

* Key pair generation:

— Choose two large prime numbers, p and ¢; denote their
product pg=n, known as the modulus of the RSA algorithm

— Choose a random integer e, such that e and (p-1)(g-1)
have no common divisors; this will be the public key

— Compute the integer d, which satisfies ed=1 (mod (p-1)(g-
1)); this is the private key

— Discard all data about p and g

24

"IIXU‘

RSA Encryption

* Encryption of a message (bit-string) M

— Divide M into k-bit blocks: M=mm,...m,
— k =|n|-1 (|n] is the length of the modulus n in bits)

— Regard m, as an integer 0<m,<n, and compute
c, =mse modn

— Repeat the same for m,, m,, ..., m,

— Convert the integers c,, C,, ..., C, to binary

— The encrypted message is now (the concatenated bit-
string) C = c,C,...C,

25

"IIXU‘

RSA Decryption

* Decryption of the ciphertext bit-string C=c,c.,...c,

— Interpret the k-bit strings c,, C,, ..., C, as integers
represented in binary notation

— Compute ¢, mod n, ¢, mod n, ..., ¢4 mod n

— Compute ¢, mod n = (m,;2 mod n)d mod n = m;2 mod n =
m, mod n = m, , and repeat this for c,, c,, ..., C,

— The original message is now recovered by concatenating
the binary representations of the intermediary results: M =
m;m,...m,

* Decryption works, because e and d were chosen
so that ed = 1 (mod (p-1)(g-1)):
— this implies m#¥ mod n = m, mod n, a basic fact from
elementary number theory

26

"IIXU‘

Security of RSA

e Itis assumed that the attacker knows the public key e and

the modulus n

After several years of cryptological study, the best known

method for computing the private key d using the knowledge

of n and e is to factor n into primes

— That is, find the numbers p and q in the original composition of
n=pq

If the modulus is very large (n > 21990) the integer

factorization problem is very hard to solve

— In February 1999 a 465-bit (140-digit) integer was factorized with
hundreds of workstations running in parallel for several months

— A result (April 1999) by Adi Shamir (the “S” of RSA) describes
principles for constructing a hardware device potentially capable
of factoring a 600-bit integer

27

"IIXU‘

Diffie-Hellman Key Exchange

In 1976, W. Diffie and M. Hellman offered a
solution to the on-line key distribution problem:

— Alice and Bob agree on using a large prime number p and
a base number 1<g<p

— Alice chooses a random number a: 1<a<p, and computes
g2 mod p

— similarly, Bob chooses b: 1<b<p, and computes g°> mod p

— Alice sends Bob g2 mod p, and Bob sends Alice g° mod p

— Alice computes (g° mod p)2 mod p

— Bob computes (g2 mod p)® mod p

— Now, Alice and Bob share a common (secret) value, since
(g® mod p)2 mod p= g& mod p = (g2 mod p)* mod p

28

"IIXU‘

Diffie-Hellman Analysis

If someone eavesdropped the transaction

between Alice and Bob, he/she would have gained

knowledge of p, g, g2 mod p and g°® mod p:

— The problem of determining g2 mod p from the above
Information is known as the Diffie-Hellman problem

— To date, no computationally efficient algorithm for solving
this, if the prime p > 21000

Alice and Bob and may start using symmetric
encryption with g2° as their shared secret key

This Diffie-Hellman method is used today in SSH
and IKE (Internet Key Exchange), for instance

A generalized version runs on elliptic curves

20

'\IXU‘

Problems with Asymmetric
Cryptosystems

A asymmetric cryptosystem solves the key
agreement problem

We still have no solution to the identification
problem
— Its easy to create fake public keys

Other problems

— are average Internet users competent enough to create
good cryptographic keys?
— what if | lost my private key?

We need a public key infrastructure (PKI)
— an organized system to securely distribute public keys

30

"IIXU‘

PGP

Designed by Phil Zimmermann for providing cryptographic
protection of e-mail and file storage

Combines strong cryptographic algorithms with e-mail byte
conversion and key management techniques

Original versions written for Unix
— Includes versions up to 2.6.x

— Open source

— Free of charge

Commercial version available from Network Associates

— Support for a variety of platforms; including Unix, Mac, and
Windows

— Graphical user interface

21

"IIXU‘

PGP Design Philosophy

Written for individual end-users

— Every user creates and manages his/her own keys
— Every user has a freedom to choose, who to trust

No administrative organization or governments
involved
— No hierarchy in trust relationships

No standardization organizations involved

— The product has become a de facto standard

— OpenPGP is a recent attempt by IETF to create standards
for establishing interoperability between different PGP
Implementations and mail clients

Ky

"IIXU‘

PGP Functionality

* PGP offers five services for mail messages:

— Authentication using digital signatures

— Confidentiality with the use of encryption

— Compression

— E-mail compatibility by converting binary data to 7-bit
ASCII

— Segmentation by fragmenting long messages into smaller
chunks

23

'\IXU‘

Standard PGP Operation:
Sending

sender’s private key receiver’s public key

s TN ;T N
| | | I
| AE | | sessionkey—® AFE |
| | | | PGP
input | | | | armored
message | | | | output
| - ” —|Fh- C >—¢—> E ——— - " —|+-- R -
| |
| / | f
S - e — = — -~
\ signature creation encryption y.
H = Hash Function (SHA-1) || =Concatenation
E = Symmetric Encryption (CAST, IDEA or 3DES) C = Compression (ZIF)

AE = Asymmetric Enryption (RSA, DSS, or Discrete Log) R = Radix-64 Conversion

4

"IIXU‘

Standard PGP Operation:
Recelving

receiver’s private kKey sender’s public key

4 N

eﬁ c_:rypted
Se8S101 ke sign aturg AE |

| |
| AE : : I signature
PGP validity
armored | : | m -

. | I |
input encrypted messag
-1 -1 | Sncrypltea | -1 -1 .
- R —:—p- I e E —:—h- C I | : plaintext
!

message
\ ! | f -
e -~ oo -~
\ decryption signature verification /
H = Hash Function (SHA-1) ||'11 =Inverse Concatenation
E = Symmetric Encryption (CAST, IDEA or 3DES) C = Uncompression (ZIP)

AE = Asymmetric Enryption (RSA, DSS, or Discrete Log) R! = Inverse Radix-64 Conversion

35

"IIXU‘

PGP Key Management

* Every user manages a local key ring in his/her
disk, containing:
— The public keys known to the user
— Trust information about the keys

* When adding a new public key to the key ring, the
user is prompted to assign a trust level to the key

and Its owner

— How much the user trusts that the public key really
belongs to its claimed owner

— How much the user trusts the key owner to introduce new
public keys

26

"IIXU‘

PGP Key Transport

Public keys are generally distributed via e-mail or by
submitting them to a key server

How do we know that a public key really belongs to its
claimed owner?

We can call the claimed owner by telephone and ask

him/her if the public key we got is correct
— For convenience, we may ask the owner if the fingerprint (a 128-
bit hash) of the public key is correct

An alternative way is to obtain a public key from a mutually

trusted individual

— The trusted third party may indicate his/her trust for a public key
by creating a signed certificate

— The trusted party may be a widely-known certificate authority

7

"IIXU‘

A Web of Trust

@ =Key is deemed legitimate by you

= Kkey’s owner is partially trusted to sign keys

= Kkey’s owner is fully trusted to sign keys

X— =X has signed Y’s public key

38

"IIXU‘

SSH

SSH (Secure SHell) provices an encrypted TCP

connection between two hosts on the network
— Replaces Berkeley R-tools (rlogin, rcp, rsh)

— Protects X-Window system traffic

— Any TCP-connection can be tunneled over SSH

Vulnerable to “Man in the Middle” -attack

— SSH client does not know the host key until first
connection

Used mostly for systems administration and for
tunneling traffic from external hostst to the
protected domain

No standard yet, drafts exist
— http://lwww.ietf.org/html.charters/secsh-charter.ntml

30

"IIXU‘

TCP Tunneling

A local SSH client can be configured to tunnel
TCP connections from a local TCP port to a SSH
server host and from there to another host

* This protects the traffic between the two SSH
hosts

e Use requires changes to software settings, local
host appears to be the server

 SSH server is usually in port 22

40

'\IXU‘

Tunneling with SSH

Application,
e.g. e-malil

SSH client

; H
* o
Operating system, SSH tunnel %

TCP/IP software

To localhost,
port 143

<

To malil
server

port 143

>LI.LLI_LLI.LLI.I.I_I.I.LI.LLI_LI_I.IJ

To SSH server, port 22

A1

"IIXU‘

SSH 2.0 protocol key exchange

Client contacts a server (a TCP connection is
Initiated)

Server sends two public keys (server and host)
and available algorithms

Client simultaneously sends available algorithms

Client creates a session key (symmetric), encrypts
It with server’s public keys and sends it to server

A shared secret is now formed and a session Is
started

Either side may request a renegotiation of keys
User authentication is done after this

A9

